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pholine and triethylamine were satisfactory. These observa­
tions are consistent with the view that thiolate acts as a nu-
cleophilic agent in an SN2 attack on carbon. All of the de-
methylation reactions gave only one nucleotidic product with 
no traces of material derived from S N 2 attack at C5-. 
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Halogen Effects in Electron-Transfer Reactions of Alkyl 
Halides with Disodium Tetraphenylethylene. Do Alkyl 
Halide Anion-Radicals Have Finite Lifetimes in 
Solution? 

Sir: 

In 2-methyltetrahydrofuran at room temperature, disodium 
tetraphenylethylene (:TPE:2-) at initial concentrations 1-3 
X 10 - 2 M reacts with 5-hexenyl chloride, bromide, and iodide 
to give both 1-hexene and methylcyclopentane, with 1-hex-
ene/methylcyclopentane = 0.2-0.6.1-2 In the same solvent, 
sodium metal reacts with 5-hexenyl chloride to give both 
products with 1-hexene/methylcyclopentane = 10-13. Thus, 
the great majority of the cyclization found in the :TPE:2 - re­
actions cannot be attributed to cyclization of intermediate 
5-hexenylsodium. That it is due instead to cyclization of in­
termediate 5-hexenyl radicals is confirmed by the observation 
that the ratio 1-hexene/methylcyclopentane decreases from 
0.6 to 0.02 as the initial concentration of :TPE:2- is varied from 
3 X 1O-2 M down to 1 X 10 - 3 M. This is consistent with the 
competition shown in eq 1, and the observations are in quan-

:TPE:2 

titative agreement with this scheme for 12 experiments span­
ning the concentration range given.1 Further, tert-pcnty] 
chloride reacts more rapidly with :TPE:2- than pentyl chloride, 
yet tert-penty\ chloride gives only 9% olefins; no traces of 
olefins are found from pentyl chloride. Thus, the initial steps 
of these reactions cannot have significant components of nu­
cleophilic displacement and elimination. Electron transfer 
giving intermediate alkyl radicals R- from alkyl halides RX 
is occurring instead. 

This is all parallel to previous findings for the related reac­
tions of alkyl halides with sodium naphthalene (:Naph--).4 The 
parallel ceases with the consideration of halogen effects on 
product yields. In reactions with sodium naphthalene, the yield 
of reduction products (those derived from intermediate alk-
ylsodiums RNa, as opposed to "alkylation" products) is 
halogen independent (X = I, Br, Cl, F).4 '5 In reactions with 
disodium tetraphenylethylene in 2-methyltetrahydrofuran, 
primary alkyl iodides give 66 ± 3% reduction products, while 
bromides give 52 ± 3% and chlorides give 34 ± 5%.6 

The important part of the mechanism for the alkyl halide-
sodium naphthalene reaction is presented in eq 2.4 There is no 

RX + :Naph" 
:Naph 

RNaph": 

R": ( = RNa) 

(2) 

halogen effect because the C-X bond is broken before the 
product-partitioning steps. By similar reasoning, the analogous 
initial step for reactions of disodium tetraphenylethylene will 
also predict no halogen effect (eq 3). 

RX + :TPE: [:TPE-- R- (3) 

Here the brackets indicate a geminate radical pair that has not 
suffered permanent separation by relative diffusion.7-9 The 
finding of a distinct halogen effect requires a special expla­
nation. 

If the alkyl halide anion-radical RX - - is introduced as an 
intermediate of finite lifetime in a scheme that is a simple ex­
tension of eq 2 to the case of a reactant dianion, Scheme I, then 
a prediction of a halogen effect can be made. Here the halogen 
dependence arises in the competition between the decompo­
sition of RX - - in the geminate radical pair [:TPE-- RX --] and 
the diffusive separation of this pair. The longer the lifetime of 
RX -- , the greater the fraction of radical pairs [:TPE-- RX --] 
that suffer permanent separation and thereby give reduction 
product ultimately, rather than the alkylation product that 
results from cage reactions.10 This explanation requires that 
RX - - lifetimes be sufficient to permit a significant competition 
with permanent diffusive separation of the geminate radicals. 
If typical diffusion parameters apply, rate constants for RX" 
must be near 1010 s 

Scheme I 

T P E 2 - + RX 

-1 7-9 

DTPE - R X - ] — 

R T P E -

[TPB--R-] — 

:TPE"- + RX-

1 

:TPE -- + R-

: T p E : 2 -

R. ££E1*. O1PE-- + R-

(D 

O- — O-

2 T P E - -* T P E 2 - + TPE 

Counterions are omitted above, but aggregation must be at least to 
the ion pair and neutral triple ion stage. The disproportionation of 
sodium tetraphenylethylene in 2-methyltetrahydrofuran lies far to 
the right (:TPE:2~) side at equilibrium. ESR measurements of 
[:TPE-~] indicate that it is about 10"6 M during a typical reaction. 
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The most viable alternative to invoking RX - - to account for 
our data is to suppose that the presence of NaX in the "cage" 
[Na+ :TPE~- R- N a + X - ] somehow affects the subsequent 
chemistry. Perhaps the most likely possibility is that ionic 
aggregation of NaX with sodium tetraphenylethylene species 
affects their reactivities. We have sought such effects by sat­
urating :TPE:2 - solutions with NaI prior to reactions with 
5-hexenyl chloride and 5-hexenyl iodide." In each case the 
reduction product yield (RCl, 29%; RI, 63%) was within ex­
perimental error of the value obtained without added NaI. 
Thus, this alternative to RX - - is weakened. 

When RX - - escapes its geminate radical partner or is gen­
erated without a geminate radical partner (as in :Naph -- re­
actions), its inevitable fate will be decomposition to R-.12 Thus, 
halogen effects will vanish in such cases. 

We have been able to find in the literature very little evi­
dence for or against alkyl halide anion-radicals as species of 
finite lifetimes in solution. i 3 J4 Our results are strongly sug­
gestive, but not definitive, since a less attractive alternative 
hypothesis has not been definitely ruled out. However, our data 
suggest that future probes for RX - - with alkali metal coun-
terions in ethers should be designed to detect species with 
lifetimes near 1O-10 s. 
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A Triply Bridged Binuclear Molybdenum(V) Compound 
Containing Two Kinds of Bridging Thiophenolate Groups 

Sir: 

The suggestion that one or more S atoms may be coordi­
nated to molybdenum in molybdoenzymes has resulted in 
considerable interest in the coordination chemistry of molyb­
denum compounds of sulfur-containing ligands.1 As part of 
our general studies of the synthesis, structure, and reactivity 
of molybdenum compounds, we have been investigating the 
reactions of complexes containing the [Mo2O4P+ core (1) with 
thiols.2^6 Previous chemical and spectroscopic studies of some 
of the products of these reactions2'4 led to the prediction that 
those compounds of stoichiometry Mo2C>3(SR')2(S2CNR2)2 
(2) contained a bridging oxo group and two bridging SR' 
groups. Support for this concept came from the study of the 
reaction of an oxinato complex of 1 with 2-mercaptoethanol, 
which provided the first structurally defined example of a triply 
bridged binuclear Mo(V) complex.7 Herein, we confirm stoi­
chiometry 2 for R' = Ph and R = Et by an x-ray structure 
determination and show that this red-orange diamagnetic 
product of the reaction2-4 of Mo2O4(S2CNEtZ)2 (3)3-8 with 
excess thiophenol is a triply bridged complex which contains 
two strikingly different bridging thiophenolate groups. 
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A sample of Mo2O3(SPh)2(S2CNEt2)I (4) was prepared 
as previously described,4 and single crystals were obtained from 
acetone. Preliminary precession photographs (Mo Ka) es­
tablished that the crystals were triclinic with a = 9.352 (3), 
b= 19.245 (9), c = 21.426 (7) A, a = 112.78(2),/?= 119.10 
(2), and 7 = 80.00 (3)°. Space group P\ was assumed and 
confirmed by successful refinement of the structure. The cal­
culated and observed densities (1.68 and 1.66 g cm - 3 , re­
spectively) were consistent with four molecules of 4 and one 
molecule of acetone per unit cell. This formulation required 

Figure 1. Perspective view of one of the molecules of 4. The other molecule 
of 4 in the asymmetric unit has the same coordination environment about 
the Mo atoms, but slightly different conformations of the ethyl groups of 
the dithiocarbamate ligands. 
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